Photoinduced Water Oxidation at the Aqueous GaN (101̅0) Interface: Deprotonation Kinetics of the First Proton-Coupled Electron-Transfer Step

نویسندگان

  • Mehmed Z. Ertem
  • Neerav Kharche
  • Victor S. Batista
  • Mark S. Hybertsen
  • John C. Tully
  • James T. Muckerman
چکیده

Photoelectrochemical water splitting plays a key role in a promising path to the carbon-neutral generation of solar fuels. Wurzite GaN and its alloys (e.g., GaN/ZnO and InGaN) are demonstrated photocatalysts for water oxidation, and they can drive the overall water splitting reaction when coupled with co-catalysts for proton reduction. The present work investigates the water oxidation mechanism on the prototypical GaN (101 ̅0) surface using a combined ab initio molecular dynamics and molecular cluster model approach taking into account the role of water dissociation and hydrogen bonding within the first solvation shell of the hydroxylated surface. The investigation of free-energy changes for the four proton-coupled electron-transfer (PCET) steps of the water oxidation mechanism shows that the first PCET step for the conversion of −Ga−OH to −Ga−O•− requires the highest energy input. The study further examines the sequential PCETs, with the proton transfer (PT) following the electron transfer (ET), and finds that photogenerated holes localize on surface −NH sites, and the calculated free-energy changes indicate that PCET through −NH sites is thermodynamically more favorable than −OH sites. However, proton transfer from −OH sites with subsequent localization of holes on oxygen atoms is kinetically favored owing to hydrogen bonding interactions at the GaN (101 ̅0)−water interface. The deprotonation of surface −OH sites is found to be the limiting factor for the generation of reactive oxyl radical ion intermediates and consequently for water oxidation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coupling of electron and proton transfer in the photosynthetic water oxidase.

According to current estimates, the photosynthetic water oxidase functions with a quite restricted driving force. This emphasizes the importance of the catalytic mechanisms in this enzyme. The general problem of coupling electron and proton transfer is discussed from this viewpoint and it is argued that 'weak coupling' is preferable to 'strong coupling'. Weak coupling can be achieved by facilit...

متن کامل

Electron transfer and catalysis with high-valent metal-oxo complexes.

High-valent metal-oxo complexes are produced by reductive activation of dioxygen via reduction of metal complexes with reductants and dioxygen. Photoinduced electron transfer from substrates to metal complexes with dioxygen also leads to the generation of high-valent metal-oxo complexes that can oxygenate substrates. In such a case metal complexes act as a photocatalyst to oxygenate substrates ...

متن کامل

Kinetics of Photoinduced Electron Transfer between DNA Bases and Triplet 3,3′,4,4′-Benzophenone Tetracarboxylic Acid in Aqueous Solution of Different pH's: Proton-Coupled Electron Transfer?

The kinetics of triplet state quenching of 3,3',4,4'-benzophenone tetracarboxylic acid (BPTC) by DNA bases adenine, adenosine, thymine, and thymidine has been investigated in aqueous solution using time-resolved laser flash photolysis. The observation of the BPTC ketyl radical anion at λ(max) = 630 nm indicates that one electron transfer is involved in the quenching reactions. The pH-dependence...

متن کامل

Hidden photoinduced reactivity of the blue fluorescent protein mKalama1.

Understanding the photoinduced dynamics of fluorescent proteins is essential for their applications in bioimaging. Despite numerous studies on the ultrafast dynamics, the delayed response of these proteins, which often results in population of kinetically trapped dark states of various origins, is largely unexplored. Here, by using transient absorption spectroscopy spanning the time scale from ...

متن کامل

Multistep Surface Electrode Mechanism Coupled with Preceding Chemical Reaction-Theoretical Analysis in Square-Wave Voltammetry

In this theoretical work, we present for the first time voltammetric results of a surface multistep electron transfer mechanism that is associated with a preceding chemical reaction that is linked to the first electron transfer step. The mathematical model of this so-called “surface CEE mechanism” is solved under conditions of square-wave voltammetry. We present relevant set of results portrayi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015